Citation Segmentation from Sparse & Noisy Data: An Unsupervised Joint Inference Approach with Markov Logic Networks

Dustin Heckmann1 Anette Frank1
Matthias Arnold2 Peter Gietz2 Christian Roth2

1Department of Computational Linguistics, Heidelberg University
2Cluster of Excellence “Asia and Europe”, Heidelberg University

November 19th 2013
Performing automatic citation segmentation

- for a *highly multilingual* bibliography for Ottoman Studies
- operating on *sparse* and *noisy* OCR input
- following an *unsupervised* approach using probabilistic Markov Logic Networks
Turkologischer Anzeiger Online

Detailansicht: TA22, 290

Band: 22
Nummer: 290
Typ: Sammelband
Titel: Stosunki polsko-tureckie. Tadeusz majda ed.
Ort: Warszawa
Jahr: 1995
Kommentare:
- [Polsisch-türkische Beziehungen.]
- Sammelbande

Artikel:
- Kilka uwag o handlu polsko-tureckim w X VI wieku.
 Koładziejczyk, Danusz
- Kobierce z polskich manufaktur jako ilustracja wpływów sztuki tureckiej.
 Bielawska-Słotowa, Beata
- Polskie zabiegi polityczne w Turcji osmańskiej w XIX stuleciu.
 Dąbrowska, Kazimierz
- Rekopyry tureckie w zbiorach polskich.
 MAJDA, Tadeusz
- Udział Polaków w cywilizacyjnym rozwój imperium osmańskiego w połowie XIX wieku w kontekście życia działalności Mustafy Celâeddina Paszy
 Łąk, Jerzy S.
- Urząd Nasreddina Hodży - NasreddinHoca'run mansibi - pierwsza komedia turecka
 w zbiorach polskich
 Łąbczy-Koszterowa, M.
- Uwagi o stosunkach polsko-tureckich w XV wieku do panowania Stefana Batorego.
 Hensel, Wojciech
- Zwrot przymierzy za Mengii Gireja: chanatkrymski z Turcją przeciw Polsce.
 Tyszkiewicz, Jan

Schlagwörter:
- Allgemeines
 - Sammelwerke
- Geschichte
 - Gesamt und Länder oder Einzelheiten längere Zeiträume
 - Beziehungen zu anderen Ländern, über längere Zeiträume
1 Introduction
 - Turkology Annual Online
 - Citation Segmentation

2 Markov Logic Networks and Joint Inference
 - Markov Logic Networks
 - Joint Inference

3 Citation Segmentation using Joint Inference and Markov Logic
 - Markov Logic Rules
 - Experiments
 - Discussion
Turkology Annual Online

- Digitization project at the Cluster of Excellence „Asia and Europe in a Global Context“
- Turkology Annual (TA)
 - Bibliography for Turkology and Ottoman Studies
 - Department of Oriental Studies, University of Vienna
 - Highly multilingual, more than 20 different languages
 - 28 volumes, only appeared in printed form
- Scanning \rightarrow Optical Character Recognition (OCR) \rightarrow Citation Segmentation \rightarrow Database population \rightarrow Web interface
Citation Segmentation

- **Citation**: set of bibliographic information (fields)
- **Citation Segmentation**:
 - Extraction of field instances

<table>
<thead>
<tr>
<th>Number</th>
<th>Author</th>
<th>Title</th>
<th>Location</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>745</td>
<td>miller, Geoffrey</td>
<td>Straits. British policy towards the Ottoman Empire and the origins of the Dardanelles campaign.</td>
<td>Hull</td>
<td>1997</td>
<td>XXVI+604 S.</td>
</tr>
</tbody>
</table>

- **Challenges**:
 - Noise from OCR
 - Lack of redundant citations
 - Complex citation structures
 - Multilinguality
 - Inconsistencies
Markov Logic Networks

- Probabilistic extension of first-order logic
- *Weighted* first-order clauses over knowledge base
- Allow for concise statement of constraints
- Constraints can be violated → *handling uncertainty*
- Weights can be learned from training data or assigned manually
- We assigned manual weights to hand-written rules → *unsupervised*
Joint Inference

- Machine learning technique
- Exploiting redundant information

Two citations of the same article.
Joint Inference

- Machine learning technique
- Exploiting redundant information

In a) author and title are separated, b) lacks a clear separation
Joint Inference

- Machine learning technique
- Exploiting redundant information

We use knowledge extracted from a) to infer a **field separation** in b)
Joint Inference in Information Extraction

- Prior work by Poon & Domingos, 2007:
 - Exploiting recurring citation variants
 - Redundancy of full citation entries
 - Modeled fields: title, author, venue
 - CiteSeer data set

- Our approach:
 - TA does not contain fully redundant citations
 → Instead, we exploit recurring *fields* (authors, editors, locations)
 - Modeled fields: title, author, editor, location, reference, comment, year, pages
Markov Logic Rules I

- Global definitions of citation types and their field structure:
 - Different citation types (articles, monographs, anthologies)
 - Expected fields depend on citation type, e.g. articles do not contain editor:
 \[\text{Type}(c,\text{Article}) \Rightarrow \neg \text{InField}(c,\text{Editor},i).\]

- Local characteristics of fields and delimiters:
 - Special key word delimiters ("ed.", "In:")
 - Characteristics of tokens, e.g. year must consist of digits:
 \[\text{InField}(c,\text{Year},i), \text{Token}(t,i,c) \Rightarrow \text{IsNumeric}(t).\]
Joint inference rules:

- Exploiting redundancy at the field level
- Making use of recurrent entities (authors, editors)
- Example:
 - If two tokens are separated by comma and they are assigned the author field in citation a and they appear next to each other in citation b
 → They are also labeled as author in citation b

- 70 rules
Experiments

- 3 variants of the MLN system, unsupervised, Tuffy:
 - **MLN-Iso**: segmentation on the basis of local citations only
 - **JI-Cit-WCat**: extends MLN-Iso by joint inference exploiting citation-level redundancy
 - Redundant citations extracted from online bibliographic database WorldCat
 - **JI-Field-TA**: extends MLN-Iso by joint inference rules at the field level

- 2 baseline systems:
 - **TA-Regex**: Regular expression based system
 - **ParsCit**: Supervised CRF-based system, small training size

- Evaluation against gold standard:
 - 425 manually annotated citations, 2 annotators
 - Inter-annotator agreement: $\kappa = 0.97$
Field Match

Exact field match:

<table>
<thead>
<tr>
<th>Fields</th>
<th>TA-Regex</th>
<th>ParsCit</th>
<th>MLN-Iso</th>
<th>JI-Cit-WCat</th>
<th>JI-Field-TA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F₁</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>TITLE</td>
<td>85.5</td>
<td>81.6</td>
<td>83.5</td>
<td>60.0</td>
<td>59.7</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>97.3</td>
<td>87.1</td>
<td>91.9</td>
<td>89.1</td>
<td>91.7</td>
</tr>
<tr>
<td>REF</td>
<td>99.6</td>
<td>89.7</td>
<td>94.4</td>
<td>68.7</td>
<td>67.9</td>
</tr>
<tr>
<td>COMM.</td>
<td>74.7</td>
<td>84.7</td>
<td>79.4</td>
<td>61.6</td>
<td>42.1</td>
</tr>
<tr>
<td>PAGES</td>
<td>96.6</td>
<td>69.3</td>
<td>80.7</td>
<td>67.1</td>
<td>68.7</td>
</tr>
<tr>
<td>LOCATION</td>
<td>92.0</td>
<td>78.9</td>
<td>84.9</td>
<td>82.4</td>
<td>87.0</td>
</tr>
<tr>
<td>YEAR</td>
<td>97.3</td>
<td>89.4</td>
<td>93.2</td>
<td>91.1</td>
<td>95.0</td>
</tr>
<tr>
<td>EDITOR</td>
<td>66.7</td>
<td>5.6</td>
<td>10.3</td>
<td>67.6</td>
<td>69.4</td>
</tr>
<tr>
<td>all (macro-avg.)</td>
<td>88.7</td>
<td>73.3</td>
<td>77.3</td>
<td>73.2</td>
<td>71.6</td>
</tr>
<tr>
<td>all (micro-avg.)</td>
<td>92.8</td>
<td>84.3</td>
<td>88.3</td>
<td>77.9</td>
<td>75.5</td>
</tr>
</tbody>
</table>

Precision, Recall and F₁-Score by fields, macro-average, micro-average
Confusion Graphs
Discussion

- All MLN formalizations clearly outperform supervised CRF-based and rule-based methods on the TA data set
- Clear gains in recall with largely comparable precision
- Joint Inference over fields (JI-Field-TA) yields best overall results
- ParsCit scores lowest overall
- MLN Approach: unsupervised
Conclusion

Joint Inference with Markov Logic Networks for citation segmentation on sparse & noisy data

- Local and global constraints for addressing noise and sparse data
- Generalization and mutual resolution of field structure
- Knowledge-based rule encoding with probabilistic inference
- Efficient and unsupervised approach for small, non-redundant and noisy data sets
- Easily adaptable to novel data sets and domains
- Supplemented by a web-based search interface for Turkology and Ottoman Studies
References

Councill, I.G., Giles, C.L. and Kan, M.-Y.
ParsCit: An open-source CRF reference string parsing package

Domingos, P. and Lowd, D.
Markov Logic. An Interface Layer for Artificial Intelligence

Hazai, G. and Kellner-Heinkele, B. eds.
Turkology Annual
Universität Wien. Institut für Orientalistik, 1975ff

Poon, H. and Domingos, P.
Joint Inference in Information Extraction
In Proceedings of the national conference on Artificial Intelligence, 2007